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Abstract 

The paper presents a cognitive model of color 
categorization and discusses its applications to color image 
quality. The structure of color categories is argued to 
resemble the structure of the distribution of colors in the 
perceived world. This distribution can be represented as 
color statistics in some perceptual and approximately 
uniform color space (e.g., the CIELUV color space). The 
process of color categorization can be modeled through the 
grouping of color statistics by clustering algorithms (e.g., 
K-means). This model explains the location, and rank of 
color categories. The model might be considered as a first 
step towards developing a uniform cognitive color space. 
The equality of distances between color categories can be 
the criterion of uniformity for such a space. It is argued that 
some image processing techniques (e.g., gamut mapping, 
color quantization, segmentation, coding etc.) might be 
more appropriate to perform in a cognitively uniform color 
space. 

Introduction 

Most of modern image quality metrics are based on the 
properties of the visual system only, and do not take into 
account cognitive aspects involved in image quality 
judgements. Such metrics can be very useful to define the 
subjective tolerance to reproduction errors or artifacts, 
especially at the threshold level. They can provide the 
answer on the question ‘what do people accept to see in 
images’. However, they are unable to respond on more 
general questions of the supra-threshold level ‘what do 
people expect to see’ or ‘what do people prefer to see’ in 
observed pictures. To answer these questions, one has to 
consider high-level cognitive phenomena such as memory 
and preference. 

The phenomena of memory and preference have been 
studied extensively in color science. Several experiments 
revealed a discrepancy between memory colors, preferred 

1-5colors, and actual colors for various objects. There was 
evidence of a significant increase in saturation of memory 
colors for some object categories (e.g., grass, sky, and food 

items). However, other categories showed no such shift (e.g. 
sand, skin), or showed it in the opposite direction (e.g. 
concrete). To explain these results, Newhall et al.2 have 
proposed that the color shift in memory and preference 
judgements was caused by the influence of prototypical 
object colors. Recently, Yendrikhovskij et al.6 have 
developed a computational model of prototypical object 
colors, which was used to analyze perceived naturalness 
and quality8 of color images. 

Prototypes, or the most typical examples of object 
categories, are presumably developed through the process of 
generalization from the population of apparent object seen 
in the past. The Generalization Theory proposed by 
Shepard9 provides an explicit explanation for generalization 
principles that govern the organism's behavior. The process 
of generalization is closely related to another cognitive 
process, the process of categorization. The General 
Recognition Theory,10 which is one of the most advanced 
categorization models, demonstrated that the structure of 
natural categories could be effectively modeled by a 
multivariate normal (Gaussian) distribution. This paper 
shortly describes a computational model of color 
categorization (CMCC) that adopts the Generalization 
Theory and General Recognition Theory. For a complete 
description, see Ref. 11. The paper also discusses possible 
applications of this model for color imaging science. 

Color Categorization 

Definition of Color Categorization 
Color categorization can be defined as the grouping of 

color sensations into classes “by means of which 
nonidentical stimuli can be treated as equivalent”.12 In 
general, this grouping has can be performed at different 
levels of visuo-cognitive processing. A model described in 
this chapter focuses on the semantic color categorization 
(i.e., color naming), which takes place between perceptual 
and semantic levels. More specifically, the model considers 
single-word color names, so-called “basic color terms”, 

13originally defined by Berlin and Kay, and extensively 
14 studied by Boynton and Olson. 
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Origin of Color Categorization 
The idea about external (ecological) origin of color 

categorization was discussed at great length by Shepard,15 

who proposed that this organization most likely reflects 
something about natural groupings of the surface reflection 
distributions of biologically significant objects or something 
about the way in which terrestrial lighting has typically 
varied during evolutionary history. The information about 
surface reflections and terrestrial lighting is available to 
observers only through the process of color perception. As a 
result, the categorical color organization was argued to have 
an internal (physiological) basis and have originated from 
metrical properties (e.g., interpoint distances) of the 

16perceptual color space. 
One of the main assumptions advocated in this paper is 

that the structure of color categories originates from the 
statistical structure of the perceived color environment that 
was observed throughout an individual’s life. By the use of 
words (1) ‘perceived’ and (2) ‘environment’ this 
assumption recognizes that color categorization is 
determined both by (1) the internal properties of the 
sensorial system and (2) the external properties of the 
outside world. From this perspective, color categories of an 
individual A, for example, might be different from ones of 
an individual B because of differences in their visual 
receptors (e.g., the individual A is a normal trichromate; 
individual B is a dichromate) or/and due to differences in 
their environments (e.g., the individual A lives in the 
Northeast part of Canada; individual B lives in the 
Southwest part of the US). 

Model of Color Categorization 
This section provides a description of a computational 

color categorization (CCC) model. The CCC model consists 
of five major components: physical environment, color 
perception, perceived color environment, color 
categorization, and color category system. 

Physical color environment corresponds to physical 
characteristics of visual stimuli seen by an individual in the 
past. A visual stimulus defines a momentary pattern of light 
reflected/radiated by observed objects (e.g., people, trees, 
fruits, lights, etc.). Generally, the physical color 
environment can be modeled by a representative sample of 
color stimuli entered individual's eyes throughout his/her 
life. Because such modeling is problematic, one has to find 
plausible alternatives. The CCC model represents the 
physical color environment by a representative sample of 
natural (photographic) images. 

In line with this idea, a set of 630 natural images was 
collected. The images were taken from TV net (110 
pictures), Photo CDs (170 pictures), and scanned from 
books about color in nature (350 pictures). They represented 
typical categories of scenes: portraits, landscapes, flowers, 
animals, etc. The whole set of natural images contained 5 
424 000 pixels. A random sample of 10 000 pixels was 
chosen for further processing and analysis. 

The process of color perception is modeled as a 
transformation from a physical domain to perceptually 

uniform color space. As a suitable approximation the CCC 
model can choose the CIE 1976 L*u*v* (CIELUV for short) 
color space, because it has an associated perceptually 
uniform chromaticity diagram. Certainly, other color spaces 
(e.g., CIELAB) and appearance models (e.g., CIECAM97s) 
can be used (see Ref. 17 for a review). The R,  G,  B gray 
values representing the sampling of 10 000 randomly 
chosen pixels were transformed to r, g, b luminance values, 
then to the X, Y, Z tristimulus values, and eventually, to the 
L*, u*, v* color coordinates. The transformation into the 
CIELUV color space was made using standard formulas18 

based on the assumption that the images were to be shown 
on a CRT display with PAL (European color television) 
standard characteristics. 
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Figure 1. A random sample of the color statistics of 630 natural 
images in the CIE (a) L*u*v* color space, and (b) u’v’ diagram. 
The solid line indicates the PAL TV color gamut. 

Perceived color environment corresponds to perceptual 
color characteristics of visual stimuli seen by an individual 
in the past. Generally, the perceptual color environment can 
be modeled by statistics of a representative sample of these 
stimuli in a perceptual color space. The CCC model 
represents perceived color environment by statistics of the 
representative sample of the natural images in the CIELUV 
color space. 

The sampling of 10 000 randomly chosen pixels 
representing the whole set of collected images in the 
CIELUV color space is shown in Fig. 1. Apparently, the 
distribution of the color statistics from the natural images is 
not spread uniformly in the CIELUV color space. Most of 
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the distribution points are concentrated around the lightness 
(L*) axis of the CIELUV color space. This area represents 
achromatic colors, i.e., colors close to reference white. Two 
other areas with a high frequency distribution can be 
identified in Fig. 1(b). These two areas correspond to red­
green and blue parts of the CIELUV color space. There are 
very little colors in the green-blue and red-blue parts of the 
CIELUV color space. 

These data agree well with the measurements reported 
20by Howard and Burnidge,19 Hendley and Hecht, and by 

Burton and Moorhead.21 They showed that naturally 
occurring colors are distributed within a restricted area of 
the chromaticity diagram, and that there are three important 
groups of colors in nature. Water, sky, and distant objects 
fall within a blue region; green plants fall within a yellow­
green region; earth and dried vegetation are yellow to 
orange-red. The last group also includes the average color 
of human complexions, which have a dominant wavelength 

22close to 590 nm. 
The process of color categorization is considered as the 

grouping of color sensations into classes. Generally, the 
process of color categorization can be modeled using the 
concept of vector quantization from information theory. 
Vector quantization is a data compression method where a 
set of data points is encoded by a reduced set of reference 
vectors, the codebook.23 One can assume that the color 
categorization is based on the minimum-distance criterion. 
This implies that points with minimum-distance to each 
other in the color space are likely to belong to the same 
color category. Therefore, the process of color 
categorization can be modeled by a clustering algorithm 
such as the K-means or ISODATA clustering algorithms. 

The process of color categorization was modeled by K­
means clustering of the CIE L*u*v* color coordinates of the 
statistics of the natural images in the CIELUV color space. 
Modeling was performed using a K-means clustering 
routine of CANTATA visual programming environment for 
the Khoros system.24. This routine converts an input image 
into vectors of equal size and performs the K-means 
clustering algorithm on the vectors using randomly chosen 
K initial cluster centers. After K initial cluster centers are 
chosen, the image vectors are iteratively distributed among 
the K cluster domains. New cluster centers are computed 
from these results, such that the sum of the squared 
distances from all points in a cluster to the new cluster 
center is minimized. 

Color category system can be described by few basic 
parameters (location, border, order, number, and weight) of 
color categories. Generally, these parameters can be 
modeled by the corresponding parameters (location, border, 
rank, number, and weight) of clusters derived by the 
clustering algorithm. This paper describes how the location, 
and rank of color categories can be computed. 

Computing Color Categories 
Location of color categories can be computed from 

coordinates of cluster centers derived by the K-means 
clustering algorithm from the color statistics of the natural 

images in the CIELUV color space. Figure 2 illustrates 11 
cluster centers derived by the CANTATA K-means 
clustering algorithm from the sample of 10 000 pixels 
representing the natural images. The cluster centers are 
plotted in the CIE u’v’ chromaticity diagram together with 

14the eleven focal colors found by Boynton and Olson. The 
original focal colors were derived by Boynton and Olson on 
the basis of single-word color naming of 424 color samples 
from the OSA space. The coordinates of focal colors shown 
in Fig. 2 were obtained through the sequential 
transformation of the OSA L, j, g, values to the CIE Y, x, y 
values, and, eventually, to the CIE L*, u*, v* values by 

18 using standard table and formulae. 
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Figure 2. Eleven (circles) cluster centers derived from the color 
statistics of natural images and (crosses) focal colors found by 

14Boynton and Olson. 

The location of the cluster centers in the CIELUV space 
was close to the location of the focal colors with one 
exception. Among the cluster centers, there was a ‘green­
yellow’ cluster, which did not belong to the eleven focal 
colors described by Boynton and Olson. On the other hand, 
the analogue of the focal color ‘purple’ was not derived by 
the K-means clustering algorithm. 

A linear regression analysis demonstrates that the 
coordinates of 10 focal colors and 10 corresponding cluster 
centers are similar: the correlation between their lightness 
L* values is r = 0.76 the correlation between their hue H 
values is r = 0.99; the correlation between their chroma C* 
values is r = 0.88; the correlation between their s 
(saturation) values is r = 0.90. These results support the idea 
that the structure of color categories originates from the 
statistical structure of the perceived environment. 

Rank of color categories can be computed from the 
rank (order of emergence) of cluster centers derived by the 
K-means clustering algorithm from the color statistics of the 
natural images in the CIELUV color space. 

Berlin and Kay13 have suggested that if languages are 
ranked according to number of color category terms, the 
evolutionary sequence of these terms (in reference to 
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English names) is generally as follows: (1) black and white; 
(2) red; (3) green/yellow; (4) yellow/green; (5) blue; (6) 
brown; (7) pink, purple, orange, and gray. In other words, if 
a language has only three color terms, they are most likely 
to correspond to English white, black, and red, and not, for 
example, to pink, orange, and brown. The exact 
evolutionary order of color words varies across different 
languages, but in general shows a remarkable consistency. 

The rank of the cluster centers resulting from the K­
means algorithm is similar to the rank of color terms 
described by Berlin and Kay. For example, the cluster 
centers obtained by the K-means algorithm with K = 3 
roughly correspond to English terms ‘black’, ‘white’, and 
‘red’; the cluster centers obtained by the K-means algorithm 
with K = 7 roughly correspond to English terms ‘black’, 
‘white’, ‘red’ ‘green’, ‘yellow’, ‘blue’ and ‘brown’; the 
cluster centers obtained by the K-means algorithm with K = 
11 roughly correspond to English terms ‘black’, ‘white’, 
‘red’ ‘green’, ‘yellow’, ‘blue’, ‘brown’, ‘gray’, ‘orange’, 
‘pink’ and ‘green-yellow’. 

A moderately high correlation (r = 0.710) was found 
between rank of 10 color-terms derived from Berlin and 
Kay’s data and the sum of the two parameters: (1) 
normalized numbers of items in the clusters and (2) 
normalized CIELUV distance between the cluster center and 
the average center of all clusters. The results suggest that 
the development of a color term across languages might be 
determined by two constraints: (1) frequency at which 
colors represented by this term occur in environment, and 
(2) perceived remoteness of these colors from colors 
represented by already existing terms. 

In general, the obtained results support the idea that the 
evolutionary order of color terms depends on both the 
external properties of the outside world (frequency of color 
occurrence) and the internal properties of the perceptual 
system (metrics of color space). This idea might explain the 
old mysteries of why the color term ‘red’ has a particular 
salience in different cultures and why it evolves before 
other color terms in many languages. The possible 
explanation is that the color term ‘red’ corresponds to colors 
that are both frequently occurred in the perceived 
environment of people speaking these languages and 
substantially distant from other colors in their perceptual 
spaces. On the one hand, the term ‘red’ evolves before, for 
example, the term ‘pink’ because pink colors are relatively 
rare in nature (Fig. 1). On the other hand, the term ‘red’ 
evolves before, for example, the term ‘green’ because green 
colors are relatively close to the average center of the all 
colors in the CIELUV color space and, especially, in the 
CIE u’v’ chromaticity diagram (Fig. 1). 

Applications for Color Imaging 

The result of this research can be applied to different areas 
of imaging science: color quantisation, image quality, 
gamut mapping, etc. For example, the analysis of the color 
statistics representing the natural images in the CIELUV 
color space revealed that the obtained distribution was 

rather uniform in the lightness (L*) dimension, somewhat 
nonuniform in the hue (H) dimension, and extremely 
nonuniform in the chroma (C*) dimension. Taking into 
account a roughly inverse relationship between uniformity 
and redundancy, one can speculate that the color 
distribution of natural images along the chroma dimension 
is usually more redundant than along the hue dimension, 
and much more redundant than along the lightness 
dimension. Speculating even further, one can hypothesize 
that quantization along the chroma dimension would 
probably be less obvious than along the hue and lightness 
dimensions. Preliminary results have shown that the 
quantization of the chroma values is, indeed, less noticeable 
than the quantization of the hue and lightness values. 
Moreover, the quantization based on the color statistics of 
the natural images produced a slightly better rendering than 
the quantization based on the color statistics of the uniform 
(white noise) image. 

The data described in this paper support the assumption 
that the structure of color categories originates from the 
statistical structure of the perceived color environment 
observed throughout individual’s life. Consequently, this 
implies that the location of prototypical colors in a 
perceptual space might be different for different individuals. 
In principle, it is possible to determine the exact coordinates 
of the prototypical color in the perceptual space for an 
individual or a group of people (e.g., based on their age, 
geography, genotype, etc.). This can be achieved, for 
example, using the method described by Boynton and 

14Olson. If the exact coordinates of the prototypical colors 
are known, one can create a “prototypical color profile” that 
is specific for the individual or the group of people. The 
“prototypical color profile” can be used to customize the 
process of color reproduction through the transformation of 
chromaticity coordinates of all colors in an image towards 
the chromaticity coordinates of the corresponding color 
prototypes. This transformation can be total (i.e., all colors 
are replaced by the corresponding color prototypes) or 
partial (i.e., all colors are shifted towards the corresponding 
color prototypes). One can hypothesize that an image with 
colors shifted towards individually specific color prototypes 
might have a higher subjective image quality than the 
original image. In general, the concept of the “prototypical 
color profile” might be used to develop new types of 
adaptive algorithms that optimize image quality based on 
individual and cultural differences. This idea needs to be 
investigated further. 

The prototypical colors could also be used to optimize 
the process of color gamut mapping. In this case, it would 
be necessary to define a set of prototypical colors produced 
by a source device (e.g., a CRT monitor) and a set of 
prototypical colors produced by a destination device (e.g., 
an inkjet printer). This can be done experimentally by 
asking observers to estimate prototypicality of colors 
produced by both devices. When the prototypical colors of 
the devices are known, they can be used to convert any 
image from the source device into the destination device in 
such a way that the prototypical colors of the source device 
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are mapped into the prototypical colors of the destination 
device. Interestingly, an algorithm that utilizes the notion of 
categorical colors for gamut mapping has been already 
proposed.25 

The possible applications of the concepts of color 
categorization and color prototypes for color quantization, 
image quality and gamut mapping might be considered as a 
first step towards incorporating cognitive aspects of color in 
imaging science. One can even hypothesize that some image 
processing techniques (e.g., color quantization, color 
enhancement, gamut mapping, etc.) might be more 
appropriate to perform in a cognitively uniform color space 
rather than in a perceptually uniform color space. The 
equality of distances between centers of color categories 
(color prototypes) can be the criterion of uniformity for 
such a space. The development of a cognitively uniform 
color space for color imaging science is a subject of future 
research. 
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